

Рис. 6. Зависимость планируемой прибыли П автосамосвалов БелАЗ-75215 за час, полученной в результате перевозки полезного ископаемого, от продольного уклона і дороги.

УДК 622.271.4:621.879:62-587.5

К ВОПРОСУ ОБ ОЦЕНКЕ ФАКТИЧЕСКОГО ТЕХНИЧЕСКОГО СОСТОЯНИЯ РЕДУКТОРОВ МОТОР-КОЛЕС КАРЬЕРНЫХ АВТОСАМОСВАЛОВ

А.А. Хорешок, А.В. Кудреватых, Е.В. Смирнов, О.И. Савенков Кузбасский Государственный Технический Университет им. Т.Ф. Горбачева, ОблГИБДД, АТП «Собус» (ИП)

Резервы снижения себестоимости добычи, повышения производительности работы экскаваторно-автомобильных комплексов заключаются в сокращении простоев горных машин и оборудования.

В результате простоев карьерных автосамосвалов на горных предприятиях компании ОАО «УК Кузбассразрезуголь» в 2008 г. ущерб от невыполненных объемов грузоперевозки автотранспортом составил 12701,8 тыс.м³, что 3,5 раза больше, чем в 2005 г. Эти потери, в основном, связаны с большими простоями автосамосвалов по организационно-техническим причинам, доля которых составила 94% от общих простоев, при простоях по климатическим условиям – 6%. Простои автосамосвалов по климатическим условиям в 2008 г. составили 5064,4 моточасов, что обусловило уменьшение объема невывезенной горной массы на 523,2 тыс.м³. В то же время простои по организационно-техническим причинам, составившие 84894,8 моточасов, привели к снижению невыполненных объемов горной массы на 12178,6 тыс.м³.

Очевидно, что для повышения производительности парка автосамосвалов компании необходимо добиться радикального сокращения простоев по организационно-техническим причинам. В свою очередь наибольшую

долю в простоях организационно-технического характера составили отказы в работе деталей, узлов и агрегатов автосамосвалов. В 2008 г. на четырех из шести разрезах компании первое место по числу и «тяжести» потерь от простев автосамосвалов занимает отказ редуктора мотор-колеса. По этой причине разрезом Кедровский было потеряно 18286,7 моточасов (26,05% от общего времени простоев), разрезом Моховский 5855,7 моточасов (45,63%), разрезом Бачатский 23100,8 моточасов (29,86%) и разрезом Калтанский 10977,4 моточасов (31,83%). В целом по причине отказа редуктора мотор-колеса рассмотренными 6-ю разрезами ОАО «УК Кузбассразрезуголь» потеряно 80699,7 моточасов, что составило 23% от общего времени простоев технологического автотранспорта [1].

Эти данные подтверждают актуальность внедрения мероприятий, направленных на предупреждение отказов в работе рассмотренных механизмов и сокращение времени нахождения техники в аварийных ремонтах.

Значительная часть горнодобывающих предприятий используют планово-предупредительную систему обслуживания. Но в целях обеспечения стабильной работы горных машин и оборудования наиболее целесообразно перестраивать тактику технического обслуживания: от ремонта вышедшего из строя оборудования к недопущению выхода его из строя (отказа). На этом и строится стратегия обслуживания горных машин и оборудования по фактическому техническому состоянию. Это обусловлено тем, что планово-предупредительные ремонты не учитывают индивидуальных особенностей работы горных машин и оборудования (условия эксплуатации, квалификация рабочих и др.). Стратегия обслуживания по фактическому техническому состоянию состоит в устранении отказов горных машин и оборудования, обнаруживаемых методами распознавания технического состояния с применением диагностических параметров (например, температуры, шума и др.). Техническая база профилактического обслуживания основана на том, что существует взаимосвязь между возможными техническими неисправностями агрегата и диагностическими параметрами, которые можно контролировать. Другими словами, большинство распознаваемых дефектов, которые могут возникать в агрегате, имеют определенные диагностические признаки и параметры, предупреждающие о том, что дефекты присутствуют, развиваются и могут привести к отказу.

Следовательно, проводя мониторинг различных параметров, характеризующих работу оборудования, можно вовремя обнаружить изменение его технического состояния и провести техническое обслуживание только тогда, когда возникает реальная возможность выхода его параметров за предельно допустимые пределы.

Основная причина аварийных поломок редукторов мотор-колес карьерных автосамосвалов заключается в их интенсивном износе. В целях его своевременного обнаружения и, следовательно, сокращения незапланированных простоев автосамосвалов в ремонтах, целесообразно приме-

нять регулярную, опережающую техническую диагностику состояния отдельных узлов и агрегатов. Современные методы тщательной и всесторонней диагностики позволяют не только быстро обнаружить неисправный агрегат или узел, но и точно установить причину неисправности.

На горных предприятиях техническое состояние редукторов мотор-колес карьерных автосамосвалов в процессе эксплуатации в основном определяется: внешним осмотром; на слух (шумность работы) и вибрацию; по степени нагрева корпуса агрегата. Внешним осмотром, по протечкам масла, можно выявить износ или повреждение манжет, а также появление пор и трещин в корпусе, крышке или ступице мотор-колеса. При появлении вибрации или повышенного уровня шума при работе могут быть выявлены случайные поломки или ослабление крепления деталей. По степени нагрева можно определить нарушение регулировки подшипников или изменение уровня масла в редукторе.

Одним из важнейших параметром надежности редуктора моторколеса является зазор между подшипником и упорным кольцом (Рис. 1).

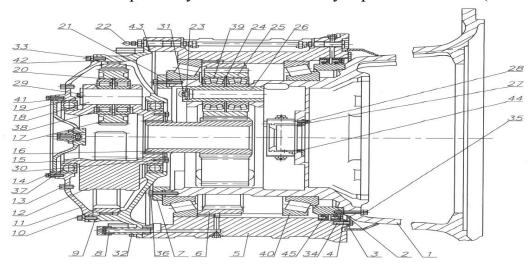


Рисунок 1 — Редуктор электромотор-колесо автосамосвалов БелА375131:

1 — корпус редуктора; 2 — кольцо подманжетное; 3 — прижим; 4 — кольцо дистанционное; 5 — ступица; 6 — коронная шестерня второго ряда; 7 — кольцо упорное; 8 — пробка сливная; 9 — крышка ведущая; 10 — коронная шестерня первого ряда; 11 — крышка водила первого ряда; 12 — водило первого ряда; 13 — пробка контрольная; 14 — крышка редуктора; 15 — пластина стопорная;16 — солнечная шестерня второго ряда; 17 — сателлит первого ряда; 18 — ось сателлита первого ряда; 19 — пластина стопорная; 20 — кольцо стопорное; 21 — шайба распорная; 22 — масленка; 23 — пластины стопорные; 24 — кольца стопорные; 25 — сателлит второго ряда; 26 — ось сателлита второго ряда; 27 — кольцо; 28 — 36 — болты; 37 — 40 — подшипники; 41 — 43 — кольца уплотнительные; 44, 45 — манжеты.

В настоящее время нормой для допуска редуктора к эксплуатации является зазор в 0,03 мм [2]. Следующий демонтаж редуктора проводиться через год. За это время износ составляет 0,5-1 мм и при значении 1,03 мм проводиться ремонт. Поэтому целесообразно проводить диагностирование

по фактическому состоянию редуктора мотор-колеса, позволяющий вести контроль за износом подшипника и контролировать параметры узлов по достижению предельно допустимых значений. Диагностика заключается в установке специального датчика в упорном кольце подшипника редуктора мотор-колеса.

Регулировка датчика осуществляется следующим образом:

-выбирается зазор между подвижным контактом датчика и наружной обоймой подшипника путем выбора длины штока подвижного контакта датчика, уменьшая длину штока подвижного контакта стачиванием.

-после затяжки регулировочных болтов вкручивается датчик в гнездо предназначенное для него в упорном кольце, затягивая до упора, при этом не забыв подключить его к сети с напряжением 14 В. При закручивании датчика контрольная лампа должна загореться, момент срабатывания составит -0.03 мм [2].

-выбирается зазор путем подкладывания регулировочных шайб между датчиком и упорным кольцом. Толщина шайб составляет $0,1\,\mathrm{mm}$, а допустимый зазор $-1\,\mathrm{mm}$. При затягивании датчика контрольная лампа горит. При срабатывании датчика во время эксплуатации автосамосвала контрольная лампа гаснет, и тем самым предупреждает что зазор сепараторов подшипника (Рис. 2) превысил предельно допустимые параметры.

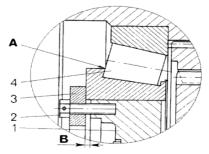


Рисунок 2 - Проверка зазоров:

1 - корпус редуктора, 2 - болт регулировочный, 3 - кольцо упорное, 4 — подшипник, A - место установки щупа: В — зазор

Благодаря диагностированию по фактическому состоянию редуктор мотор-колеса не будет эксплуатироваться с зазорами, превышающими допустимые, что позволит предотвратить его отказ и будет способствовать следующим качественным улучшениям:

- 1) оперативный контроль состояния карьерного автосамосвала;
- 2) постоянный контроль за состоянием редуктора во время эксплуатации;
- 3) увеличение интервалов между плановым обслуживанием и ремонтом;
 - 4) сокращение непредвиденных простоев техники;
 - 5) уменьшение затрат на текущий ремонт;
 - б) защита карьерного автосамосвала от аварий (при внезапном

отказе редуктора мотор-колеса);

7) экономия средств на приобретение новых деталей и ремонт в результате работ планово-предупредительного характера.

Таким образом, внедрение данной методики дает возможность наиболее полного использования индивидуальных возможностей горных машин и оборудования и обеспечение на этой основе повышения их надежности, что обеспечивается за счет внедрения в технологический процесс технического обслуживания и дополнительной технологической операции — диагностирования технического состояния редукторов мотор-колес по фактическому состоянию.

Список литературы

- 1. Хорешок, А.А. Метод комплексного диагностирования редукторов мотор-колес карьерных автосамосвалов (на примере ОАО УК «Кузбассразрезуголь») / А. А. Хорешок, А.В. Кудреватых // Горная промышленность. № 5, 2010.
- 2. РУПП «Белорусский автомобильный завод» Карьерный самосвал БелАЗ-75131 и его модификации, руководство по ремонту. Жодино, 2009.

УДК 622.232.83

ОПЫТ ЭКСПЛУАТАЦИИ ПРОХОДЧЕСКИХ КОМБАЙНОВ ИЗБИРАТЕЛЬНОГО ДЕЙСТВИЯ НА ШАХТЕ «ПОЛЫСАЕВСКАЯ» А.А. Хорешок, И.К. Костинец, С.Г. Мухортиков, Ю.В. Дрозденко КузГТУ, ОАО «СУЭК-Кузбасс» г. Ленинск-Кузнецкий, филиал КузГТУ в г. Белово

Рост объемов добычи угля невозможен без увеличения темпов проведения подготовительных горных выработок. Самое широкое распространение на угольных шахтах получил комбайновый способ, с применением проходческих комбайнов избирательного действия со стреловидным исполнительным органом. Область применения этого способа с каждым годом расширяется, в связи с созданием более совершенных моделей.

На шахте «Полысаевская» ОАО «СУЭК-Кузбасс» ежегодно проводится значительные объемы подготовительных горных выработок (рис. 1) с применением комбайнов избирательного действия.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Филиал государственного бюджетного образовательного учреждения высшего профессионального образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева» в г. Белово

V международная научно-практическая конференция

ИННОВАЦИИ В ТЕХНОЛОГИЯХ И ОБРАЗОВАНИИ

Сборник статей

Часть 1

УДК 082.1

ББК 65.34.13 (2Рос – 4Кем)

Печатается по решению редакционно-издательского совета КузГТУ.

Редколлегия:

Блюменштейн В.Ю., д.т.н., профессор (отв. редактор)

Верчагина И.Ю., к.и.н.

Долганов Д.Н., к.пс.н.

Законнова Л.И., к.б.н.

Сенчурова Ю.А., к.т.н.

Костинец И.К.

Инновации в технологиях и образовании: сборник статей участников V международной научной конференции «Инновации в технологиях и образовании» (18–19 мая 2012 г.): в 3 частях. / Филиал КузГТУ в г. Белово. – Белово: Изд-во филиала КузГТУ в г. Белово, 2012. – Ч. 1. – 300 с.

В сборнике содержатся статьи участников секций «Горные машины и оборудование», «Механика», «Технологии», «Транспорт», «Энергетика» V международной научной конференции «Инновации в технологиях и образовании», которая состоялась 18–19 мая 2012 г.

УДК 082.1

ББК65.34.13 (2Рос – 4Кем)

Печатается в авторской редакции.

Незначительные исправления и дополнительное форматирование вызвано приведением материалов к требованиям печати.

ISBN 978-5-89070-850-2

- © Филиал государственного бюджетного образовательного учреждения высшего профессионального образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева» в г. Белово, 2012
- © Коллектив авторов, 2012

СОДЕРЖАНИЕ

СЕКЦИЯ «ГОРНЫЕ МАШИНЫ И ОБОРУДОВАНИЕ»9
АНАЛИЗ И СОВЕРШЕНСТВОВАНИЕ ГИДРОСИСТЕМЫ
ПРОХОДЧЕСКОГО КОМБАЙНА Ю.А. Антонов, Г.Д. Буялич, Н.О. Горощенко
СОВЕРШЕНСТВОВАНИЕ СИСТЕМЫ ОРОШЕНИЯ
ПРОХОДЧЕСКОГО КОМБАЙНА Ю.А. Антонов, А.В. Лола
ПУТИ ПОВЫШЕНИЯ ЭКСПЛУАТАЦИОННОЙ НАДЁЖНОСТИ ТУРБОКОМПРЕССОРОВ ДВИГАТЕЛЕЙ ВНУТРЕННЕГО
СГОРАНИЯ А.Ю. Бурцев
ФИЗИЧЕСКОЕ МОДЕЛИРОВАНИЕ ОТРАБОТКИ ПЛАСТА С ТЯЖЁЛОЙ КРОВЛЕЙ Г.Д. Буялич, Ю.А. Антонов, В.И. Шейкин . 20
ОЦЕНКА ПЛОТНОСТИ КОНЕЧНО-ЭЛЕМЕНТНОЙ СЕТКИ
МОДЕЛИ Г. Д. Буялич, В. В. Воеводин, К. Г. Буялич
УПРОЩЕННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ РЕЖИМА РАБОТЫ НАСОСНЫХ АГРЕГАТОВ Н.И. Ваулин, А.В. Тюленев 24
СИСТЕМА ПОДАЧИ ГИДРОФИЦИРОВАННОГО БУРОВОГО
СТАНКА СО СПАРЕННЫМИ ГИДРОЦИЛИНДРАМИ А.Н. Ермаков,
С.В Увакин, Е.А. Гребенников
ПОВЫШЕНИЕ СРОКА СЛУЖБЫ КОНВЕЙЕРНЫХ ЛЕНТ НА ГОРНЫХ ПРЕДПРИЯТИЯХ Е.Г. Кузин 30
ОПЫТ ЭКСПЛУАТАЦИИ ПРОХОДЧЕСКОГО КОМБАЙНА КП-21
НА ШАХТЕ « КРАСНОЯРСКАЯ» КОМПАНИИ «СУЭК-КУЗБАСС» П.А.Ланбамин, А.И. Жаров, Ю.А. Семыкин, А.В. Ремезов,
И.К. Костинец
СОВРЕМЕННЫЕ КОНСТРУКЦИИ АНКЕРНОГО КРЕПЛЕНИЯ И
ТЕХНОЛОГИИ ЕГО УСТАНОВКИ Н. Г. Носков, А. В. Ремезов, А. И. Жаров
ВНЕДРЕНИЕ В ЭКСПЛУАТАЦИЮ НОВОГО КОМПЛЕКСА
МКЮ2У-14/28 НА ШАХТЕ «ЗАРЕЧНАЯ» ШАХТО-УЧАСТОК
«ОКТЯБРЬСКИЙ» М.С. Панов, А.И. Жаров, А.В. Ремезов, И.К. Костинец
ЭКСПЕРИМЕНТАЛЬНЫЕ ИСПЫТАНИЯ МОДЕЛЕЙ КОВШЕЙ
ГИДРАВЛИЧЕСКИХ ЭКСКАВАТОРОВ НА ДЕЙСТВУЮЩЕМ
СТЕНДЕ Е. Ю. Пудов

ЗАКОНОМЕРНОСТИ ИЗМЕНЕНИЯ ЭФФЕКТИВНОСТИ
ЭКСКАВАТОРНО-АВТОМОБИЛЬНЫХ КОМПЛЕКСОВ ОТ
ПРОДОЛЬНОГО УКЛОНА ДОРОГИ Д.В. Стенин, А.С. Фурман 53
К ВОПРОСУ ОБ ОЦЕНКЕ ФАКТИЧЕСКОГО ТЕХНИЧЕСКОГО
СОСТОЯНИЯ РЕДУКТОРОВ МОТОР-КОЛЕС КАРЬЕРНЫХ
АВТОСАМОСВАЛОВ А.А. Хорешок, А.В. Кудреватых, Е.В
Смирнов, О.И. Савенков
ОПЫТ ЭКСПЛУАТАЦИИ ПРОХОДЧЕСКИХ КОМБАЙНОЕ
ИЗБИРАТЕЛЬНОГО ДЕЙСТВИЯ НА ШАХТЕ «ПОЛЫСАЕВСКАЯ»
А.А. Хорешок, И.К. Костинец, С.Г. Мухортиков, Ю.В. Дрозденко б
МОДЕЛЬ МЕХАНИЧЕСКИХ КОЛЕБАНИЙ ВЕНТИЛЯТОРА
ГЛАВНОГО ПРОВЕТРИВАНИЯ В.Н. Шахманов 64
СЕКЦИЯ «МЕХАНИКА» 68
ОСОБЕННОСТИ ВВЕДЕНИЯ ОБОБЩЕННЫХ КООРДИНАТ ПРИ
ИССЛЕДОВАНИИ СИСТЕМ С СЕРВОСВЯЗЯМИ К.Б. Хусанов, Г.А
Бахадиров, А. Абдукаримов, Н.Р. Баракаев
СЕКЦИЯ «ТЕХНОЛОГИИ»
ИССЛЕДОВАНИЕ ГАЛАКТОЗИДАЗНОЙ АКТИВНОСТИ
МОЛОЧНОКИСЛЫХ БАКТЕРИЙ СЕРИИ «DELVO-YOG» Е
СТАБИЛИЗИРОВАННЫХ МОЛОЧНЫХ ПРОДУКТАХ
А.Н. Архипов, А.В. Позднякова72
ПЕРСПЕКТИВА РАЗВИТИЯ ШАХТОУЧАСТКА «ОКТЯБРЬСКИЙ»
ОАО «ШАХТА «ЗАРЕЧНАЯ» НА 2012-2025 ГОДЫ С.А. Астапов
А.В. Бубнов, А.И. Жаров, А.В. Ремезов, Л.Н. Котова76
ИСПОЛЬЗОВАНИЕ РЕСУРСА WOLFRAMALFA В ПРОЦЕССЕ
ПОДГОТОВКИ СТУДЕНТОВ ЭКОНОМИЧЕСКИХ
СПЕЦИАЛЬНОСТЕЙ О.В. Барна, Е.Г. Кузьминская
ЛИНИЯ ДЛЯ ТРАНСПОРТИРОВАНИЯ И МЕХАНИЧЕСКОЙ
ОБРАБОТКИ ШТУЧНЫХ ПЛОСКИХ МАТЕРИАЛОВ Г.А. Бахадиров, А.М. Набиев
Г.А. Бахадиров, А.М. Набиев
ОБОСНОВАНИЕ РАЦИОНАЛЬНОГО КОМПЛЕКТА ВЫЕМОЧНО
ПОГРУЗОЧНОГО ОБОРУДОВАНИЯ В УГЛЕНАСЫЩЕННОЙ ЗОНЕ
МАЛОМОЩНЫХ ПЛАСТОВ РАЗРЕЗА «БАЧАТСКИЙ»
М.Н. Благославенный, В.И. Митяев
ТЕХНОЛОГИИ ПРИМЕНЕНИЯ СОВРЕМЕННЫХ ПОЛИМЕРНЫХ
МАТЕРИАЛОВ В ГОРНОМ ПРОИЗВОДСТВЕ В УСЛОВИЯХ
ШАХТЫ «ЧЕРТИНСКАЯ-ЮЖНАЯ» И.В. Вешкин 91
тенденции современного технологического
РАЗВИТИЯ ОСВОЕНИЯ УГОЛЬНЫХ МЕСТОРОЖДЕНИЙ

А.Е. Воробьев, Г.В. Лоцев, А.Н. Пихота
УСЛОВИЯ ОБРАЗОВАНИЯ ВЫДЕЛЕНИЙ МЕТАНА В АТМОСФЕРУ ЗЕМЛИ Е. А. Воробьева, Е. А. Воротилина 101
ИСПОЛЬЗОВАНИЕ ИНТЕРНЕТ-ТЕХНОЛОГИЙ ЗАРУБЕЖНЫМИ НЕФТЕХИМИЧЕСКИМИ КОМПАНИЯМИ Л.И. Гатина 104
РЕЦИКЛИНГ КАК ОСНОВА СОВРЕМЕННОЙ ТЕХНОЛОГИИ М.В. Грабченко, В.П. Тугульдурова, М.Ю. Михайленко
ПЕРСПЕКТИВА РАЗВИТИЯ ООО «ШАХТА ЧЕРТИНСКАЯ-КОКСОВАЯ» ДО 2020 Г. Н.В. Рябков, Ю.А. Грязев, А.И. Жаров,
С.В. Белов
РАЗРАБОТКА МЕРОПРИЯТИЙ ПО РАБОТЕ ОЧИСТНОГО ЗАБОЯ В ЗОНАХ С ПОВЫШЕННОЙ ОБВОДНЕННОСТЬЮ ПО ПЛАСТУ «ПОЛЕНОВСКИЙ» А.И. Жаров, К.В. Терехин, А.В. Ремезов 115
ПРИМЕНЕНИЕ СОВРЕМЕННЫХ ТЕХНОЛОГИЙ В СТРОИТЕЛЬНОЙ ОТРАСЛИ В Г. КЕМЕРОВО Ю. С. Жеребцова, 3. И. Петрович
•
РАЗРАБОТКА И ИСПОЛЬЗОВАНИЕ МНОГОАГЕНТНЫХ БАНКОВ ЗНАНИЙ Е.И. Зайцев
ИССЛЕДОВАНИЕ ЗАТРАТ РАБОЧЕГО ВРЕМЕНИ НА ОТРАБОТКУ
ВЫЕМОЧНОГО БЛОКА ПРИ РАЗЛИЧНЫХ РАЗМЕРАХ РАДИУСА
ОПАСНОЙ ЗОНЫ Е.В. Заречнева, Ю.А. Масаев 126
ПРОБЛЕМЫ СТАНДАРТИЗАЦИИ ИННОВАЦИИ В
НЕФТЕГАЗОВОЙ ОТРАСЛИ РЕСПУБЛИКИ КАЗАХСТАН Ж.Б. Ильмалиев 131
ФОРМИРОВАНИЕ КУЛЬТУРОВЕДЧЕСКОЙ КОМПЕТЕНЦИИ В ОБРАЗОВАТЕЛЬНОМ УЧРЕЖДЕНИИ СПО Л.В. Кайль 135
ИСПОЛЬЗОВАНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ В ГОРНОМ ОБОРУДОВАНИИ Н. К. Колмакова
ОБОСНОВАНИЕ ТЕХНОЛОГИИ ОТРАБОТКИ
БЕСТРАНСПОРТНОЙ ВСКРЫШИ Т.А. Кравченко146
ФРАКТАЛЬНЫЙ ХАРАКТЕР ДИНАМИКИ ПРОЦЕССА
НИЗКОТЕМПЕРАТУРНОГО ОКИСЛЕНИЯ УГЛЯ С УЧЕТОМ
ГЕНЕРАЦИИ И ДЕЗАКТИВАЦИИ АКТИВНЫХ ЦЕНТРОВ К.С. Лебедев
ПЕРСПЕКТИВА РАЗВИТИЯ ОАО «СУЭК-КУЗБАСС» Ш.
ПОЛЫСАЕВСКАЯ ДО 2020 ГОДА М.А. Лебедев, А.И. Жаров, А.В.
Ремезов. Л.Н. Котова

ИНТЕГРАЛЬНАЯ МЕТОДОЛОГИЯ ДОЛГОСРОЧНОГО ПРОГНОЗИРОВАНИЯ Р.С. Лубинский
ОБОСНОВАНИЕ ТЕХНОЛОГИИ ОТРАБОТКИ ТРАНСПОРТНОЙ ВСКРЫШИ НА РАЗРЕЗЕ «ЗАДУБРОВСКИЙ» И.Д. Майстренко 165
ТЕХНОЛОГИЧЕСКИЕ СТРАТЕГИЧЕСКИЕ АЛЬЯНСЫ – СПЕЦИФИЧЕСКАЯ ФОРМА ТОРГОВОГО ТРАНСФЕРА ТЕХНОЛОГИЙ М.В. Божинова
АНАЛИЗ ФАКТОРОВ, ВЛИЯЮЩИХ НА ОБЕСПЕЧЕНИЕ КАЧЕСТВА РАЗРУШЕНИЯ ГОРНЫХ ПОРОД ПРИ СООРУЖЕНИИ ПОДЗЕМНЫХ ГОРНЫХ ВЫРАБОТОК Ю.А. Масаев, К.В. Кузнецова
ЭМУЛЬСИОННЫЕ ВЗРЫВЧАТЫЕ ВЕЩЕСТВА — НОВОЕ НАПРАВЛЕНИЕ СОВЕРШЕНСТВОВАНИЯ ВЗРЫВНЫХ РАБОТ В ОТКРЫТЫХ И ПОДЗЕМНЫХ УСЛОВИЯХ Ю.А. Масаев, К.В. Кузнецова
О ПРИЧИНАХ ПОЯВЛЕНИЯ МЕТАНА В ГОРНЫХ ВЫРАБОТКАХ И МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ОПАСНЫХ КОНЦЕНТРАЦИЙ Ю.А. Масаев, В.Ю. Масаев, Е.А. Воробьева, Е.А. Воротилина 181
ИССЛЕДОВАНИЕ И РАЗРАБОТКА МЕРОПРИЯТИЙ ПОВЫШЕНИЯ КАЧЕСТВА РАЗРУШЕНИЯ ГОРНЫХ ВЫРАБОТОК С ПРИМЕНЕНИЕМ ВЗРЫВНЫХ РАБОТ Н.В. Мильбергер 184
ПОЛУЧЕНИЕ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ НА ОСНОВЕ ВТОРИЧНОГО ПОЛИМЕРНОГО СЫРЬЯ В.А. Мокейкин 190
ПЕРСПЕКТИВЫ ПРИМЕНЕНИЯ БЕЗРИГЕЛЬНОГО УНИФИЦИРОВАННОГО КАРКАСА В ГРАЖДАНСКОМ СТРОИТЕЛЬСТВЕ В КЕМЕРОВСКОЙ ОБЛАСТИ Е.Г. Недогода . 194
ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ ГОРИЗОНТАЛЬНОГО УГЛА ОТ ДЛИН ЕГО СТОРОН М.С. Новиков, Н.В. Порошина 197
КОМПЛЕКСНОЕ ИСПОЛЬЗОВАНИЕ КАПТИРОВАННОГО ГАЗА МЕТАНА Н.Г. Носков, А.В. Ремезов, А.И. Жаров
УГОЛЬ ЭТО НЕ ТОЛЬКО РАЗНЫЕ ВИДЫ ЭНЕРГИИ, НО И НОВЫЕ ВИДЫ МАТЕРИАЛОВ Н.Г. Носков, А.В. Ремезов, А.И. Жаров 208
ПРИБОРЫ ДЛЯ ПИРОГРАФИИ А.А. ОСАДЧИЙ, А.В. КОКОРИН 212
ПРИМЕНЕНИЕ СТЕНОВЫХ БЛОКОВ В СОВРЕМЕННОМ СТРОИТЕЛЬСТВЕ А.А. Пешков
ШАХТНЫЕ ИССЛЕДОВАНИЯ ИЗМЕНЕНИЯ ВЛАЖНОСТИ УГОЛЬНОГО МАССИВА ВО ВРЕМЯ ПРОВЕТРИВАНИЯ ГОРНЫХ ВЫРАБОТОК М.С. Сазонов

ПЕРСПЕКТИВЫ РАЗВИТИЯ ШАХТЫ «КОМСОМОЛЕЦ» НА ПЕРИОД 2012-2032 ГГ. И.А. Сальвассер, М.В. Саблин, А.И. Жаров,
Г.М. Пшикова
ТЕРМИНОЛОГИЯ ВСКРЫТИЯ ШАХТНОГО ПОЛЯ
А.Н. Супруненко, А.И. Жури
СОПОСТАВИТЕЛЬНЫЙ АНАЛИЗ САЙТОВ ВЕДУЩИХ РЕГИОНАЛЬНЫХ ГАЗЕТ В БОЛГАРИИ ТИХОМИР СТЕФАНОВ 236
ОБОСНОВАНИЕ РАЦИОНАЛЬНОЙ ТЕХНОЛОГИЧЕСКОЙ СХЕМЫ ОТРАБОТКИ ВСКРЫШИ НА РАЗРЕЗЕ «ШЕСТАКИ» Е.В. Тяпкина 240
СРЕДСТВА ИНДИВИДУАЛЬНОЙ ЗАЩИТЫ В УГОЛЬНОЙ ОТРАСЛИ Ю.Ю. Шаранок 244
НЕКОТОРЫЕ ОСОБЕННОСТИ ИНТЕНСИФИКАЦИИ ТЕПЛОПЕРЕДАЧИ В ТЕПЛООБМЕННИКАХ СУДОВЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК С.Н. Шевченко
ПЕРСПЕКТИВА РАЗВИТИЯ ШАХТЫ КРАСНОЯРСКАЯ ОАО «СУЭК-КУЗБАСС» ДО 2020 ГОДА С.Н. Шерин, Ю.А. Семыкин, А.Н. Жаров, А.В. Ремезов
УЧЕТ ФАКТОРОВ УПРОЧНЕНИЯ И АНИЗОТРОПИИ ПРИ МОДЕЛИРОВАНИИ ПРИРОДОСБЕРЕГАЮЩЕГО ПРОЦЕССА ВЫДАВЛИВАНИЯ ЦИЛИНДРИЧЕСКИХ ИЗДЕЛИЙ Е.К. Шипьянов 259
ПОВЫШЕНИЕ ЭФФЕКТИВНОСТИ ПРОФИЛАКТИКИ САМОВОЗГОРАНИЯ УГЛЯ П.А. Шлапаков 263
СЕКЦИЯ «ТРАНСПОРТ»267
УЧЕТ СОСТОЯНИЯ ВОДИТЕЛЯ И ОКРУЖАЮЩЕЙ ОБСТАНОВКИ НА ДОРОГЕ ДЛЯ СНИЖЕНИЯ РИСКОВ АВАРИЙ НА ТРАНСПОРТЕ А.Н. Варнавский, Н.В. Чекан
ИССЛЕДОВАНИЕ ВЛИЯНИЯ УСЛОВИЙ СЕЗОННОЙ ЭКСПЛУАТАЦИИ ТРАНСПОРТНЫХ СРЕДСТВ НА БЕЗОПАСНОСТЬ ДОРОЖНОГО ДВИЖЕНИЯ В Г. КЕМЕРОВО
Ю.Н. Семенов, А. Л. Гринева
К ВОПРОСУ ОЦЕНКИ ВЛИЯНИЯ УСЛОВИЙ ЭКСПЛУАТАЦИИ НА ТЕПЛОВОЕ СОСТОЯНИЕ РЕДУКТОРОВ МОТОР-КОЛЕС АВТОСАМОСВАЛОВ БЕЛАЗ Д.В. Стенин, Н.А. Стенина, А.С. Фурман
СЕКЦИЯ «ЭНЕРГЕТИКА»
,

ОПТИМИЗАЦИЯ РАЗМЕЩЕНИЯ КОМПЕНСИРУЮЩИХ
УСТРОЙСТВ В ЭЛЕКТРИЧЕСКИХ СЕТЯХ МЕТОДОМ ЛАГРАНЖА
Р.В. Беляевский
ЭФФЕКТИВНОЕ УПРАВЛЕНИЕ ПРОЦЕССОМ ГОРЕНИЯ ЭЛЕКТРИЧЕСКИМ ПОЛЕМ А.С. Бобров 283
ЧИСЛЕННОГО МОДЕЛИРОВАНИЯ ТУРБУЛЕНТНОГО ГОРЕНИЯ ПЫЛЕУГОЛЬНОГО ФАКЕЛА С.А. Болегенова, А. Бекмухамет,
М.Т. Бекетаева, В.Ю. Максимов
СРАВНЕНИЕ БУРОВЫХ СТАНКОВ ПО ЭНЕРГОЭФФЕКТИВНОСТИ Т.Л. Долгопол, А. В. Егоров 288
ЭЛЕКТРОПОТРЕБЛЕНИЕ И ЭНЕРГОСБЕРЕЖЕНИЕ В БЫТУ Т.Л. Долгопол, В.Д. Моисеева, Е.А Корнюшина 291
ИССЛЕДОВАНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ ИСТОЧНИКОВ СВЕТА ДЛЯ ОБЩЕСТВЕННЫХ ПОМЕЩЕНИЙ Т.Л. Долгопол, С.А. Лещев, А.В. Поздняков

Сборник статей

участников V международной научной конференции «Инновации в технологиях и образовании»

Белово, филиал КузГТУ в г. Белово 18–19 мая 2012

Часть 1

Научное издание

Компьютерная верстка Д.Н. Долганов, Л.И. Законнова

Оригинал-макет подготовлен на базе филиала КузГТУ в г. Белово

Подписано к печати 20.06.2012 Бумага офсетная Усл. печ. л. 18.5 Заказ Формат $60 \times 84/16$ Гарнитура «Times New Roman» Тираж 100 экз.

Заказ филиала КузГТУ в г. Белово 652644, Кемеровская обл., г. Белово, пгт. Инской, ул. Ильича, 32–а.

Типография ГУ КузГТУ 650000, г. Кемерово, ул. Д. Бедного, 4а