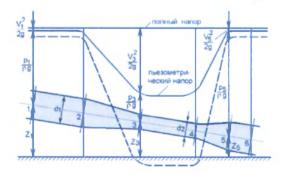


чебники КузГТ


Кузбасский государственный технический университет

имени Т. Ф. Горбачёва

В. В. Кузнецов К. А. Ананьев

ГИДРОМЕХАНИКА И ОСНОВЫ ГИДРАВЛИКИ

Кемерово 2013

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т. Ф. Горбачева»

В. В. Кузнецов К. А. Ананьев

ГИДРОМЕХАНИКА И ОСНОВЫ ГИДРАВЛИКИ

(Теоретический курс с примерами практических расчетов)

Учебное пособие

Допущено Учебно-методическим объединением вузов Российской Федерации по образованию в области горного дела в качестве учебного пособия для студентов вузов, обучающихся по направлениям подготовки (специальностям) «Горное дело» и «Физические процессы горного или нефтегазового производства»

Рецензенты:

Доктор технических наук, заведующий лабораторией угольной геотехники В. В. Аксенов (ИУ СО РАН)

Кандидат технических наук, доцент кафедры горно-шахтного оборудования М. Ю. Блащук (ЮТИ ТПУ)

Кузнецов, В. В. Гидромеханика и основы гидравлики (Теоретический курс с примерами практических расчетов) : учеб. пособие / В. В. Кузнецов, К. А. Ананьев ; Кузбас. гос. техн. ун-т им. Т. Ф. Горбачева. – Кемерово, 2013. – 266 с.

ISBN 978-5-89070-905-9

Изложен теоретический материал по гидромеханике и основам гидравлики, включающий разделы: физические основы статики, кинематики, динамики текучих сред, а также режимы движения жидкости. Отображены вопросы истечения жидкости через отверстия и насадки, теория лопастных насосов и трубопроводные системы различных конфигураций, представлены примеры практических расчетов, позволяющие студентам закрепить полученные знания.

Подготовлено по дисциплинам «Гидромеханика» и «Гидравлика» в соответствии с Федеральным государственным образовательным стандартом высшего профессионального образования для студентов специальностей 130400.65 «Горное дело» и 131201.65 «Физические процессы горного или нефтегазового производства».

УДК 622.223:621.22(075.8)

© Кузбасский государственный технический университет имени Т. Ф. Горбачева, 2013

© Кузнецов В. В., Ананьев К. А., 2013

Предисловие

Раздел механики, в котором изучают равновесие и движение жидкости, а также силовое взаимодействие между жидкостью и обтекаемыми ею телами или ограничивающими ее поверхностями, называется гидромеханикой. Если же помимо жидкостей изучают движение газов и обтекание ими тел, то науку называют аэрогидродинамикой.

Термину "жидкость" в гидромеханике часто придают более широкий смысл, чем это принято в обыденной жизни. В понятие "жидкость" включают все тела, обладающие свойством текучести, т. е. способностью сильно изменять свою форму под действием бесконечно малых сил. Поэтому в это понятие включают как жидкости обычные, называемые капельными, так и газы. Важной особенностью капельных жидкостей является то, что они ничтожно мало изменяют свой объем при изменении давления, поэтому их обычно считают несжимаемыми. Газы, наоборот, могут значительно уменьшаться в объеме под действием давления и неограниченно расширяться при отсутствии давления. Несмотря на это различие, законы движения капельных жидкостей и газов при определенных условиях можно считать одинаковыми. Основным из этих условий является малая скорость течения газа по сравнению со скоростью распространения в нем звука.

Историческое развитие механики жидкостей шло двумя разными путями.

Первый путь — теоретический, путь точного математического анализа, основанного на законах механики. Он привел к созданию теоретической гидромеханики, которая долгое время являлась самостоятельной дисциплиной, непосредственно не связанной с экспериментом. Метод теоретической гидромеханики является весьма эффективным средством научного исследования. Однако на пути чисто теоретического исследования движения жидкости встречается множество трудностей, и методы теоретической гидромеханики не всегда дают ответы на вопросы, выдвигаемые практикой.

Второй путь — путь широкого привлечения эксперимента и накопления опытных данных для использования их в инженерной практике — привел к созданию гидравлики. Она возникла из насущных задач практической деятельности людей. В начальный период своего развития гидравлика была наукой чисто эмпирической. В настоящее время в ней, где это возможно и целесообразно, все больше применяют методы теоретической гидромеханики для решения отдельных задач, а теоретическая гидромеханика все чаще начинает прибегать к эксперименту. Таким образом, различия в методах этих двух направлений одной и той же науки постепенно исчезают. Поэтому в последнее время все большее употребление получает наименование техническая (прикладная) гидромеханика. Она находит применение в большинстве отраслей техники и для многих из них является теоретической базой.

Привлечение для гидравлических исследований теории подобия гидромеханических процессов с применением определенных методик моделирования и современной вычислительной техники позволяет получить достаточно достоверные данные о параметрах, которыми будет характеризоваться реальный гидравлический объект. Экспериментальные исследования позволяют в необходимых случаях уточнять результаты, полученные в аналитических расчетах, при принятии тех или иных допущений.

Цель данного учебного пособия – раскрыть суть общих законов покоя и движения жидкостей и газов, показать некоторые общие методы описания гидромеханических явлений, а также дать практические навыки гидравлических расчетов.

Учебное пособие подготовлено в соответствии с новой редакцией Федерального государственного образовательного стандарта высшего профессионального образования для студентов специальностей «Горное дело» и «Физические процессы горного или нефтегазового производства». Содержит как теоретические сведения в области гидравлики и гидромеханики, так и примеры их практического применения. Данное пособие является базовым для студентов горного профиля при изучении дисциплин «Гидромеханика» и «Гидравлика».

ЗАКЛЮЧЕНИЕ

Научное направление гидромеханики и основ гидравлики нашло широкое применение в различных отраслях производства, таких как гидроэнергетика, горное производство, машиностроение, строительство и т. д.

Рассмотренные теоретические вопросы по гидростатике, кинематике и динамике жидкости являются предпосылкой решения практических задач, связанных с различными гидравлическими явлениями.

Не все теоретические выкладки в гидромеханике можно оценить с большой точностью, поэтому применение теории подобия позволяет скорректировать и получить более глубокие показатели по гидравлическим процессам и тем самым получить оптимальные параметры натурного объекта.

Теория истечения жидкости через отверстия и насадки необходима для расчета конструкции гидромониторов, получения рациональных конструктивных параметров форсунок для динамического воздействия струи на твердую поверхность и систем пылеподавления.

Гидравлический расчет трубопроводов позволяет минимизировать потери на трубопроводах последовательного и параллельного соединения при различных диаметрах труб. Теоретические основы расчета трубопроводных систем с насосной подачей жидкости и теория работы лопастных насосов способствуют правильному выбору насосных агрегатов.

Представленные примеры практических расчетов помогут студентам получить навыки применения теоретических основ гидромеханики и гидравлики к решению типовых инженерных задач.

ОГЛАВЛЕНИЕ

			3
	1.	ОСНОВНЫЕ ФИЗИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ	
		И ГАЗОВ	5
	1.1.	Отличительные особенности различных состояний веще-	
		СТВа	
		Силы, действующие на жидкость. Давление в жидкости	
		Основные свойства жидкостей и газов	
	1.4.	Контрольные вопросы	19
	2.	ГИДРОСТАТИКА	21
	2.1.	Гидростатическое давление и его свойство	21
		Основное уравнение гидростатики	
	2.3.	Измерение давления	26
	2.4.	Дифференциальные уравнения равновесия жидкости	32
	2.5.	Решение дифференциальных уравнений равновесия	
		жидкости для ряда частных случаев	35
2	.5.1.	Равномерное вращение сосуда с жидкостью	
2	.5.2.	Прямолинейное движение сосуда с постоянным ускоре-	
		нием	38
	2.6.	Сила давления жидкости на плоскую стенку	
		Сила давления жидкости на цилиндрическую стенку	
		Плавание тел. Закон Архимеда	
		Контрольные вопросы	
	3.	КИНЕМАТИКА ЖИДКОСТИ	48
	3.1.	Общие положения и определения	48
		Расход. Уравнение расхода	
	3.3.	Движение жидкой частицы. Понятие о вихревом и по-	
	0.0,	тенциальном движении	52
	3.4.	Ускорение жидкой частицы	
		Контрольные вопросы	
	4	ДИНАМИКА НЕВЯЗКОЙ ЖИДКОСТИ	59
		Уравнение Бернулли для элементарной струйки идеаль-	
		ной жидкости	59
	42	Дифференциальные уравнения движения невязкой жид-	
	1.2.	кости	65
	43	Уравнение Бернулли для элементарной струйки невязко-	
	т.Э.	го газа	71
	11	Контрольные вопросы	73
	7.4.	ДИНАМИКА ВЯЗКОЙ ЖИДКОСТИ	75
	٦.	THUMINING DYOUGH WHAVE IN """"	, ,

5.1	. Напряжения в движущейся вязкой жидкости	75
5.2	. Уравнение Бернулли для элементарной струйки вязкой	
	жидкости при установившемся движении	81
5.3	. Уравнение Бернулли для потока при установившемся	
	движении вязкой жидкости	82
	. Удельная энергия потока	
5.3.2	. Уравнение Бернулли для потока	85
5.4	. Общие сведения о гидравлических потерях	87
5.5	. Контрольные вопросы	90
6	. РЕЖИМЫ ДВИЖЕНИЯ ЖИДКОСТИ	92
	. Теория подобия гидромеханических процессов	
6.2	. Метод размерностей в гидромеханике	102
	. Режимы течения жидкости в трубах. Опыты Рейнольдса	
	. Контрольные вопросы	
	. НАПОРНОЕ ТЕЧЕНИЕ В ТРУБАХ	
	. Теория ламинарного течения в круглых трубах	
	. Начальный участок ламинарного течения	
	. Ламинарное течение в зазоре	
7.4	. Турбулентное течение	125
7.4.1	. Двухслойная модель и основы теории турбулентного	
	режима движения	126
7.4.2	. Турбулентное течение в шероховатых трубах	132
7.5	. Местные гидравлические сопротивления	137
7.6	. Контрольные вопросы	145
8	. ИСТЕЧЕНИЕ ЖИДКОСТИ ЧЕРЕЗ ОТВЕРСТИЯ И	
	НАСАДКИ	146
8.1	. Истечение через малое отверстие в тонкой стенке при	
	постоянном напоре	
8.2	. Истечение через насадки при постоянном напоре	151
8.3	. Истечение жидкости из резервуара при переменном	
	напоре	
8.4	. Свободные гидравлические струи	156
8.5	. Контрольные вопросы	161
9	. ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТРУБОПРОВОДОВ	162
9.1	. Простой трубопровод постоянного сечения	162
9.2	. Соединения простых трубопроводов	165
9.3	. Трубопроводные системы с насосной подачей жидкости	170
9.4	. Гидравлический удар в трубах	175
9.5	. Контрольные вопросы	182

10. ОСНОВЫ ТЕОРИИ ЛОПАСТНЫХ НАСОСОВ	184
10.1. Основное уравнение лопастных насосов	190
10.2. Характеристика центробежного насоса	
10.3. Работа насоса на сеть	201
10.4. Подобие насосов. Формулы пересчета	203
10.4.1. Изменение характеристики насоса при изменении его	
частоты вращения	208
10.4.2. Изменение характеристики насоса при изменении	
диаметра его рабочего колеса	213
	216
10.6. Контрольные вопросы	220
11. ПРИМЕРЫ ПРАКТИЧЕСКИХ РАСЧЕТОВ	222
11.1. Физические свойства жидкостей	222
11.2. Гидростатика	224
11.3. Кинематика и динамика движения жидкости	236
11.3.1. Основные понятия. Уравнение Бернулли	236
11.3.2. Гидравлические сопротивления. Режимы течения	241
	243
11.5. Гидравлический удар в трубах	255
	258
CURCOR DEROMEHIIVEMON UNTEDATVPH	259

Кузнецов Владимир Всеволодович Ананьев Кирилл Алексеевич

ГИДРОМЕХАНИКА И ОСНОВЫ ГИДРАВЛИКИ

(Теоретический курс с примерами практических расчетов)

Редактор З. М. Савина

Подписано в печать 08.10.2013. Формат $60 \times 84/16$ Бумага офсетная. Гарнитура «Times New Roman». Усл. печ. л. 15,34 Уч.-изд. л. 16,50 Тираж 500 экз. Заказ 3 $\ref{4}$

КузГТУ. 650000, Кемерово, ул. Весенняя, 28 Полиграфический цех КузГТУ. 650000, Кемерово, ул. Д. Бедного, 4 а